The complexity of infinitely repeated alternating move games

  • Authors:
  • Yaron Velner

  • Affiliations:
  • The Blavatnik School of Computer Science, Tel Aviv University, Israel

  • Venue:
  • ICALP'13 Proceedings of the 40th international conference on Automata, Languages, and Programming - Volume Part I
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider infinite duration alternating move games. These games were previously studied by Roth, Balcan, Kalai and Mansour [10]. They presented an FPTAS for computing an approximate equilibrium, and conjectured that there is a polynomial algorithm for finding an exact equilibrium [9]. We extend their study in two directions: (1) We show that finding an exact equilibrium, even for two-player zero-sum games, is polynomial time equivalent to finding a winning strategy for a (two-player) mean-payoff game on graphs. The existence of a polynomial algorithm for the latter is a long standing open question in computer science. Our hardness result for two-player games suggests that two-player alternating move games are harder to solve than two-player simultaneous move games, while the work of Roth et al., suggests that for k≥3, k-player games are easier to analyze in the alternating move setting. (2) We show that optimal equilibria (with respect to the social welfare metric) can be obtained by pure strategies, and we present an FPTAS for computing a pure approximated equilibrium that is δ-optimal with respect to the social welfare metric. This result extends the previous work by presenting an FPTAS that finds a much more desirable approximated equilibrium. We also show that if there is a polynomial algorithm for mean-payoff games on graphs, then there is a polynomial algorithm that computes an optimal exact equilibrium, and hence, (two-player) mean-payoff games on graphs are inter-reducible with k-player alternating move games, for any k≥2.