Stochastic context-free grammars, regular languages, and newton's method

  • Authors:
  • Kousha Etessami;Alistair Stewart;Mihalis Yannakakis

  • Affiliations:
  • School of Informatics, University of Edinburgh, UK;School of Informatics, University of Edinburgh, UK;Department of Computer Science, Columbia University

  • Venue:
  • ICALP'13 Proceedings of the 40th international conference on Automata, Languages, and Programming - Volume Part II
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study the problem of computing the probability that a given stochastic context-free grammar (SCFG), G, generates a string in a given regular language L(D) (given by a DFA, D). This basic problem has a number of applications in statistical natural language processing, and it is also a key necessary step towards quantitative ω-regular model checking of stochastic context-free processes (equivalently, 1-exit recursive Markov chains, or stateless probabilistic pushdown processes). We show that the probability that G generates a string in L(D) can be computed to within arbitrary desired precision in polynomial time (in the standard Turing model of computation), under a rather mild assumption about the SCFG, G, and with no extra assumption about D. We show that this assumption is satisfied for SCFG's whose rule probabilities are learned via the well-known inside-outside (EM) algorithm for maximum-likelihood estimation (a standard method for constructing SCFGs in statistical NLP and biological sequence analysis). Thus, for these SCFGs the algorithm always runs in P-time.