Dynamic voltage & frequency scaling with online slack measurement

  • Authors:
  • Joshua M. Levine;Edward Stott;Peter Y.K. Cheung

  • Affiliations:
  • Imperial College London, London, United Kingdom;Imperial College London, London, United Kingdom;Imperial College London, London, United Kingdom

  • Venue:
  • Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays
  • Year:
  • 2014

Quantified Score

Hi-index 0.00

Visualization

Abstract

Timing margins in FPGAs are already significant and as process scaling continues they will have to grow to guarantee operation under increased variation. Margins enforce worst-case operation even in typical conditions and result in devices operating more slowly and consuming more energy than necessary. This paper presents a method of dynamic voltage and frequency scaling that uses online slack measurement to determine timing headroom in a circuit while it is operating and scale the voltage and/or frequency in response. Doing so can significantly reduce power consumption or increase throughput with a minimal overhead. The method is demonstrated on a number of benchmark circuits under a range of operating conditions, constraints and optimisation targets.