Hierarchical genetic-based grid scheduling with energy optimization

  • Authors:
  • Joanna Kołodziej;Samee Ullah Khan;Lizhe Wang;Aleksander Byrski;Nasro Min-Allah;Sajjad Ahmad Madani

  • Affiliations:
  • Institute of Computer Science, Cracow University of Technology, Cracow, Poland 31-155;NDSU-CIIT Green Computing and Communications Laboratory, North Dakota State University, Fargo, USA 58108;Center for Earth Observation, Chinese Academy of Sciences, Beijing, China;AGH University of Science and Technology, Cracow, Poland;Department of Computer Science, COMSATS Institute of Information Technology, Islamabad, Pakistan;Department of Computer Science, COMSATS Institute of Information Technology, Islamabad, Pakistan

  • Venue:
  • Cluster Computing
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

An optimization of power and energy consumptions is the important concern for a design of modern-day and future computing and communication systems. Various techniques and high performance technologies have been investigated and developed for an efficient management of such systems. All these technologies should be able to provide good performance and to cope under an increased workload demand in the dynamic environments such as Computational Grids (CGs), clusters and clouds.In this paper we approach the independent batch scheduling in CG as a bi-objective minimization problem with makespan and energy consumption as the scheduling criteria. We use the Dynamic Voltage Scaling (DVS) methodology for scaling and possible reduction of cumulative power energy utilized by the system resources. We develop two implementations of Hierarchical Genetic Strategy-based grid scheduler (Green-HGS-Sched) with elitist and struggle replacement mechanisms. The proposed algorithms were empirically evaluated versus single-population Genetic Algorithms (GAs) and Island GA models for four CG size scenarios in static and dynamic modes. The simulation results show that proposed scheduling methodologies fairly reduce the energy usage and can be easily adapted to the dynamically changing grid states and various scheduling scenarios.