High-density computing: a 240-processor Beowulf in one cubic meter

  • Authors:
  • Michael S. Warren;Eric H. Weigle;Wu-Chun Feng

  • Affiliations:
  • Los Alamos National Laboratory, Los Alamos, NM;Los Alamos National Laboratory, Los Alamos, NM;Los Alamos National Laboratory, Los Alamos, NM

  • Venue:
  • Proceedings of the 2002 ACM/IEEE conference on Supercomputing
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present results from computations on Green Destiny, a 240-processor Beowulf cluster which is contained entirely within a single 19-inch wide 42U rack. The cluster consists of 240 Transmeta TM5600 667-MHz CPUs mounted on RLX Technologies motherboard blades. The blades are mounted side-by-side in an RLX 3U rack-mount chassis, which holds 24 blades. The overall cluster contains 10 chassis and associated Fast and Gigabit Ethernet switches. The system has a footprint of 0.5 meter2 (6 square feet), a volume of 0.85 meter3 (30 cubic feet) and a measured power dissipation under load of 5200 watts (including network switches). We have measured the performance of the cluster using a gravitational treecode N-body simulation of galaxy formation using 200 million particles, which sustained an average of 38.9 Gflops on 212 nodes of the system. We also present results from a three-dimensional hydrodynamic simulation of a core-collapse supernova.