Performance-constrained Distributed DVS Scheduling for Scientific Applications on Power-aware Clusters

  • Authors:
  • Rong Ge;Xizhou Feng;Kirk W. Cameron

  • Affiliations:
  • University of South Carolina, Columbia;University of South Carolina, Columbia;University of South Carolina, Columbia

  • Venue:
  • SC '05 Proceedings of the 2005 ACM/IEEE conference on Supercomputing
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Left unchecked, the fundamental drive to increase peak performance using tens of thousands of power hungry components will lead to intolerable operating costs and failure rates. High-performance, power-aware distributed computing reduces power and energy consumption of distributed applications and systems without sacrificing performance. Generally, we use DVS (Dynamic Voltage Scaling) technology now available in high-performance microprocessors to reduce power consumption during parallel application runs when peak CPU performance is not necessary due to load imbalance, communication delays, etc. We propose distributed performance-directed DVS scheduling strategies for use in scalable power-aware HPC clusters. By varying scheduling granularity we can obtain significant energy savings without increasing execution time (36% for FT from NAS PB). We created a software framework to implement and evaluate our various techniques and show performance-directed scheduling consistently saves more energy (nearly 25% for several codes) than comparable approaches with less impact on execution time (