A multi-objective dynamic vehicle routing problem with fuzzy time windows: Model, solution and application

  • Authors:
  • Seyed Farid Ghannadpour;Simak Noori;Reza Tavakkoli-Moghaddam;Keivan Ghoseiri

  • Affiliations:
  • -;-;-;-

  • Venue:
  • Applied Soft Computing
  • Year:
  • 2014

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, a multi-objective dynamic vehicle routing problem with fuzzy time windows (DVRPFTW) is presented. In this problem, unlike most of the work where all the data are known in advance, a set of real time requests arrives randomly over time and the dispatcher does not have any deterministic or probabilistic information on the location and size of them until they arrive. Moreover, this model involves routing vehicles according to customer-specific time windows, which are highly relevant to the customers' satisfaction level. This preference information of customers can be represented as a convex fuzzy number with respect to the satisfaction for a service time. This paper uses a direct interpretation of the DVRPFTW as a multi-objective problem where the total required fleet size, overall total traveling distance and waiting time imposed on vehicles are minimized and the overall customers' preferences for service is maximized. A solving strategy based on the genetic algorithm (GA) and three basic modules are proposed, in which the state of the system including information of vehicles and customers is checked in a management module each time. The strategy module tries to organize the information reported by the management module and construct an efficient structure for solving in the subsequent module. The performance of the proposed approach is evaluated in different steps on various test problems generalized from a set of static instances in the literature. In the first step, the performance of the proposed approach is checked in static conditions and then the other assumptions and developments are added gradually and changes are examined. The computational experiments on data sets illustrate the efficiency and effectiveness of the proposed approach.