Contention in shared memory algorithms

  • Authors:
  • Cynthia Dwork;Maurice Herlihy;Orli Waarts

  • Affiliations:
  • IBM Almaden Research Center, Yorktown Heights, NY;Brown Univ., Providence, RI;Univ. of California at Berkeley, Berkeley

  • Venue:
  • Journal of the ACM (JACM)
  • Year:
  • 1997

Quantified Score

Hi-index 0.02

Visualization

Abstract

Most complexity measures for concurrent algorithms for asynchronous shared-memory architectures focus on process steps and memory consumption. In practice, however, performance of multiprocessor algorithms is heavily influenced by contention, the extent to which processess access the same location at the same time. Nevertheless, even though contention is one of the principal considerations affecting the performance of real algorithms on real multiprocessors, there are no formal tools for analyzing the contention of asynchronous shared-memory algorithms.This paper introduces the first formal complexity model for contention in shared-memory multiprocessors. We focus on the standard multiprocessor architecture in which n asynchronous processes communicate by applying read, write, and read-modify-write operations to a shared memory. To illustrate the utility of our model, we use it to derive two kinds of results: (1) lower bounds on contention for well-known basic problems such as agreement and mutual exclusion, and (2) trade-offs between the length of the critical path (maximal number of accesses to shared variables performed by a single process in executing the algorithm) and contention for these algorithms. Furthermore, we give the first formal contention analysis of a variety of counting networks, a class of concurrent data structures inplementing shared counters. Experiments indicate that certain counting networks outperform conventional single-variable counters at high levels of contention. Our analysis provides the first formal model explaining this phenomenon.