Commutativity analysis: a new analysis technique for parallelizing compilers

  • Authors:
  • Martin C. Rinard;Pedro C. Diniz

  • Affiliations:
  • Massachusetts Institute of Technology, Cambridge;Univ. of Southern California, Marina del Rey

  • Venue:
  • ACM Transactions on Programming Languages and Systems (TOPLAS)
  • Year:
  • 1997

Quantified Score

Hi-index 0.00

Visualization

Abstract

This article presents a new analysis technique, commutativity analysis, for automatically parallelizing computations that manipulate dynamic, pointer-based data structures. Commutativity analysis views the computation as composed of operations on objects. It then analyzes the program at this granularity to discover when operations commute (i.e., generate the same final result regardless of the order in which they execute). If all of the operations required to perform a given computation commute, the compiler can automatically generate parallel code. We have implemented a prototype compilation system that uses commutativity analysis as its primary analysis technique. We have used this system to automatically parallelize three complete scientific computations: the Barnes-Hut N-body solver, the Water liquid simulation code, and the String seismic simulation code. This article presents performance results for the generated parallel code running on the Stanford DASH machine. These results provide encouraging evidence that commutativity analysis can serve as the basis for a successful parallelizing compiler.