Proper tail recursion and space efficiency

  • Authors:
  • William D. Clinger

  • Affiliations:
  • Northeastern University

  • Venue:
  • PLDI '98 Proceedings of the ACM SIGPLAN 1998 conference on Programming language design and implementation
  • Year:
  • 1998

Quantified Score

Hi-index 0.00

Visualization

Abstract

The IEEE/ANSI standard for Scheme requires implementations to be properly tail recursive. This ensures that portable code can rely upon the space efficiency of continuation-passing style and other idioms. On its face, proper tail recursion concerns the efficiency of procedure calls that occur within a tail context. When examined closely, proper tail recursion also depends upon the fact that garbage collection can be asymptotically more space-efficient than Algol-like stack allocation.Proper tail recursion is not the same as ad hoc tail call optimization in stack-based languages. Proper tail recursion often precludes stack allocation of variables, but yields a well-defined asymptotic space complexity that can be relied upon by portable programs.This paper offers a formal and implementation-independent definition of proper tail recursion for Scheme. It also shows how an entire family of reference implementations can be used to characterize related safe-for-space properties, and proves the asymptotic inequalities that hold between them.