Message-optimal connected dominating sets in mobile ad hoc networks

  • Authors:
  • Khaled M. Alzoubi;Peng-Jun Wan;Ophir Frieder

  • Affiliations:
  • Illinois Institude of Technology, Chicago, IL;Illinois Institude of Technology, Chicago, IL;Illinois Institude of Technology, Chicago, IL

  • Venue:
  • Proceedings of the 3rd ACM international symposium on Mobile ad hoc networking & computing
  • Year:
  • 2002

Quantified Score

Hi-index 0.01

Visualization

Abstract

A connected dominating set (CDS) for a graph G(V,E) is a subset V1 of V, such that each node in V--V1 is adjacent to some node in V1, and V1 induces a connected subgraph. A CDS has been proposed as a virtual backbone for routing in wireless ad hoc networks. However, it is NP-hard to find a minimum connected dominating set (MCDS). Approximation algorithms for MCDS have been proposed in the literature. Most of these algorithms suffer from a very poor approximation ratio, and from high time complexity and message complexity. Recently, new distributed heuristics for constructing a CDS were developed, with constant approximation ratio of 8. These new heuristics are based on a construction of a spanning tree, which makes it very costly in terms of communication overhead to maintain the CDS in the case of mobility and topology changes.In this paper, we propose the first distributed approximation algorithm to construct a MCDS for the unit-disk-graph with a emph constant approximation ratio, and emph linear time and emph linear message complexity. This algorithm is fully localized, and does not depend on the spanning tree. Thus, the maintenance of the CDS after changes of topology guarantees the maintenance of the same approximation ratio. In this algorithm each node requires knowledge of its single-hop neighbors, and only a constant number of two-hop and three-hop neighbors. The message length is O( log n) bits.