Fuzzy and Recurrent Neural Network Motion Control among Dynamic Obstacles for Robot Manipulators

  • Authors:
  • Jean Bosco Mbede;Wu Wei;Qisen Zhang

  • Affiliations:
  • Intelligent Control and Robotics Laboratory, Department of Control Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China/ e-mail: mbede@ieee.org ...;Intelligent Control and Robotics Laboratory, Department of Control Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China;Department of Highway and Bridge Engineering, Changsha Communications University, 410076 Changsha, P. R. China

  • Venue:
  • Journal of Intelligent and Robotic Systems
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

An integration of fuzzy controller and modified Elman neural networks (NN) approximation-based computed-torque controller is proposed for motion control of autonomous manipulators in dynamic and partially known environments containing moving obstacles. The fuzzy controller is based on artificial potential fields using analytic harmonic functions, a navigation technique common used in robot control. The NN controller can deal with unmodeled bounded disturbances and/or unstructured unmodeled dynamics of the robot arm. The NN weights are tuned on-line, with no off-line learning phase required. The stability of the closed-loop system is guaranteed by the Lyapunov theory. The purpose of the controller, which is designed as a neuro-fuzzy controller, is to generate the commands for the servo-systems of the robot so it may choose its way to its goal autonomously, while reacting in real-time to unexpected events. The proposed scheme has been successfully tested. The controller also demonstrates remarkable performance in adaptation to changes in manipulator dynamics. Sensor-based motion control is an essential feature for dealing with model uncertainties and unexpected obstacles in real-time world systems.