High-Performance MCM Routing

  • Authors:
  • Jun-Dong Cho;Majid Sarrafzadeh;Mysore Sriram;Sung-Mo Kang

  • Affiliations:
  • -;-;-;-

  • Venue:
  • IEEE Design & Test
  • Year:
  • 1993

Quantified Score

Hi-index 0.00

Visualization

Abstract

The authors describe the multilayer MCM (multichip module) routing problem, and propose an approach for routing high-performance MCMs with the objective of minimizing interconnect delays and crosstalk. They first introduce an approach for rapidly estimating the time-domain response of lossy transmission line trees, and propose a realistic second-order delay model for MCM interconnects. The delay model is used to guide a performance-driven global routing algorithm. Given the 2-D global paths, the next stage is layer assignment. An effective algorithm for constrained layer assignment is developed. Based on the best-known maxcut approximation algorithm (which performs well in practice), a maximal k-color ordering is formulated for minimizing both interlayer and intralayer crosstalk as well as crossings in 3-D MCM substrates. The authors also propose a strategy that exhibits a good tradeoff between circuit performance and design cost, instead of concentrating exclusively on a single objective such as area minimization.