Creating Disjoint Paths in Gamma Interconnection Networks

  • Authors:
  • Nian-Feng Tzeng;Po-Jen Chuang;Chwan-Hwa Wu

  • Affiliations:
  • -;-;-

  • Venue:
  • IEEE Transactions on Computers
  • Year:
  • 1993

Quantified Score

Hi-index 14.98

Visualization

Abstract

The Gamma interconnection network (GIN) is composed of 3*3 basic building blocks, with interconnecting patterns between stages following the plus-minus-2/sup i/ functions. The authors consider modifications to the GIN by altering the interconnecting patterns between stages so as to achieve high terminal reliability between any source-destination pair, resulting in the reliable GIN (REGIN). A type of REGIN's ensures totally disjoint paths in existence from any source to any destination, thereby capable of tolerating an arbitrary single fault. If several building blocks (i.e., 3*3 switches) are fabricated in one chip with very large scale integrated (VLSI) technology, the layout area and the pin count are less for the REGIN than for its GIN counterpart as a result of the change in the interconnecting patterns, giving rise to potential cost reduction. The terminal reliability of the REGIN is derived and compared with that of a compatible GIN. In addition, the performance of the REGIN is evaluated using simulation.