On the Location Error of Curved Edges in Low-Pass Filtered 2-D and 3-D Images

  • Authors:
  • P. W. Verbeek;L. J. van Vliet

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Pattern Analysis and Machine Intelligence
  • Year:
  • 1994

Quantified Score

Hi-index 0.14

Visualization

Abstract

The authors study the location error of curved edges in two- and three-dimensional images after analog and digital low-pass filtering. The zero crossing of a second derivative filter is a well-known edge localization criterion. The second derivative in gradient direction (SDGD) produces a predictable bias in edge location towards the centers of curvature while the linear Laplace filter produces a shift in the opposite direction. Their sum called PLUS (PLUS=Laplace+SDGD) leads to an edge detector that finds curved edges one order more accurately than its constituents. This argument holds irrespective of the dimension. The influence of commonly used low-pass filters (such as the PSF originating from diffraction limited optics using incoherent light (2-D), the Gaussian filter with variable cutoff point (D-D), and the isotropic uniform filter (D-D)) is studied.