Spatio-Temporal Alignment of Sequences

  • Authors:
  • Yaron Caspi;Michal Irani

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Pattern Analysis and Machine Intelligence
  • Year:
  • 2002

Quantified Score

Hi-index 0.14

Visualization

Abstract

This paper studies the problem of sequence-to-sequence alignment, namely, establishing correspondences in time and in space between two different video sequences of the same dynamic scene. The sequences are recorded by uncalibrated video cameras which are either stationary or jointly moving, with fixed (but unknown) internal parameters and relative intercamera external parameters. Temporal variations between image frames (such as moving objects or changes in scene illumination) are powerful cues for alignment, which cannot be exploited by standard image-to-image alignment techniques. We show that, by folding spatial and temporal cues into a single alignment framework, situations which are inherently ambiguous for traditional image-to-image alignment methods, are often uniquely resolved by sequence-to-sequence alignment. Furthermore, the ability to align and integrate information across multiple video sequences both in time and in space gives rise to new video applications that are not possible when only image-to-image alignment is used.