Duplication-Based Scheduling Algorithm for Interconnection-Constrained Distributed Memory Machines

  • Authors:
  • Savina Bansal;Padam Kumar;Kuldip Singh

  • Affiliations:
  • -;-;-

  • Venue:
  • HiPC '02 Proceedings of the 9th International Conference on High Performance Computing
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Duplication-based scheduling techniques are more appropriate for fine grain task graphs and for networks with high communication latencies. However, most of the algorithms are developed under the assumption of fully connected processor network and with prohibitively high O(v4) time complexity. An insertion based duplication algorithm is proposed for precedence constrained task graphs, for working with limited interconnection constrained processors. It duplicates only the most important immediate parents of a task, that too if critical. Results are presented for benchmark random task graphs, having widely varying shape and cost parameters for the clique, Hypercube and an extensible and fault tolerant binary de Bruijn (undirected) multiprocessor network. The average performance degradation, due to interconnection constraints, is about 21% in comparison to fully connected processor network. Further, the schedules generated on the fixed degree binary de-Bruijn network are within 5% of the schedules on Hypercube network, whose degree keeps on increasing with size.