Partitioning Trees of Supply and Demand

  • Authors:
  • Takehiro Ito;Xiao Zhou;Takao Nishizeki

  • Affiliations:
  • -;-;-

  • Venue:
  • ISAAC '02 Proceedings of the 13th International Symposium on Algorithms and Computation
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Assume that a tree T has a number ns of "supply vertices" and all the other vertices are "demand vertices." Each supply vertex is assigned a positive number called a supply, while each demand vertex is assigned a positive number called a demand. One wish to partition T into exactly ns subtrees by deleting edges from T so that each subtree contains exactly one supply vertex whose supply is no less than the sum of demands of all demand vertices in the subtree. The "partition problem" is a decision problem to ask whether T has such a partition. The "maximum partition problem" is an optimization version of the partition problem. In this paper, we give three algorithms for the problems. First is a linear-time algorithm for the partition problem. Second is a pseudo-polynomial-time algorithm for the maximum partition problem. Third is a fully polynomial-time approximation scheme (FPTAS) for the maximum partition problem.