Computing the Maximum Detour and Spanning Ratio of Planar Paths, Trees, and Cycles

  • Authors:
  • Stefan Langerman;Pat Morin;Michael A. Soss

  • Affiliations:
  • -;-;-

  • Venue:
  • STACS '02 Proceedings of the 19th Annual Symposium on Theoretical Aspects of Computer Science
  • Year:
  • 2002

Quantified Score

Hi-index 0.01

Visualization

Abstract

The maximum detour and spanning ratio of an embedded graph G are values that measure how well G approximates Euclidean space and the complete Euclidean graph, respectively. In this paper we describe O(n log n) time algorithms for computing the maximum detour and spanning ratio of a planar polygonal path. These algorithms solve open problems posed in at least two previous works [5,10]. We also generalize these algorithms to obtain O(n log2 n) time algorithms for computing the maximum detour and spanning ratio of planar trees and cycles.