Information-Theoretic Cryptography

  • Authors:
  • Ueli M. Maurer

  • Affiliations:
  • -

  • Venue:
  • CRYPTO '99 Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

We discuss several applications of information theory in cryptography, both for unconditional and for computational security. Unconditionally-secure secrecy, authentication, and key agreement are reviewed. It is argued that unconditional security can practically be achieved by exploiting the fact that cryptography takes place in a physical world in which, for instance due to noise, nobody can have complete information about the state of a system. The general concept of an information-theoretic cryptographic primitive is proposed which covers many previously considered primitives like oblivious transfer, noisy channels, and multi-party computation. Many results in information-theoretic cryptography can be phrased as reductions among such primitives We also propose the concept of a generalized random oracle which answers more general queries than the evaluation of a random function. They have applications in proofs of the computational security of certain cryptographic schemes. This extended abstract summarizes in an informal and nontechnical way some of the material presented in the author's lecture to be given at Crypto '99.