Technologies for Augmented Reality: Calibration for Real-Time Superimposition on Rigid and Simple-Deformable Real Objects

  • Authors:
  • Yann Argotti;Valerie Outters;Larry Davis;Ami Sun;Jannick P. Rolland

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • MICCAI '01 Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

A current challenge in augmented reality applications is the ability to superimpose synthetic objects on real objects within the environment. This challenge is heightened when the real objects are in motion and/or are non-rigid. Yet even more challenging is the case when the moving real objects involved are deformable. In this article, we present a robust method for calibrating marker-based augmented reality applications to allow real-time, optical superimposition of synthetic objects on dynamic rigid and simple-deformable real objects. Moreover, we illustrate this general method with the VRDA Tool, a medical education application related to the visualization of internal human knee joint anatomy on a real human knee.