Prototypes of Biological Movements in Brains and Machines

  • Authors:
  • Martin A. Giese

  • Affiliations:
  • -

  • Venue:
  • BMCV '02 Proceedings of the Second International Workshop on Biologically Motivated Computer Vision
  • Year:
  • 2002

Quantified Score

Hi-index 0.01

Visualization

Abstract

Biological movements and actions are important visual stimuli. Their recognition is a highly relevant problem for biological as well as for technical systems. In the domain of stationary object recognition the concept of a prototype-based representation of object shape has been quite inspiring for research in computer vision as well as in neuroscience. The paper presents an overview of some recent work aiming at a generalization of such concepts for the domain of complex movements. First, a technical method is presented that allows to represent classes of complex movements by linear combinations of learned example trajectories. Applications of this method in computer vision and computer graphics are briefly discussed. The relevance of prototype-based representations for the recognition of complex movements in the visual cortex is discussed in the second part of the paper. By devising a simple neurophysiologically plausible model it is demonstrated that many experimental findings on the visual recognition of "biological motion" can be accounted for by a neural representation of learned prototypical motion patterns.