Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams

  • Authors:
  • Leo J. Guibas;Jorge Stolfi

  • Affiliations:
  • -;-

  • Venue:
  • STOC '83 Proceedings of the fifteenth annual ACM symposium on Theory of computing
  • Year:
  • 1983

Quantified Score

Hi-index 0.00

Visualization

Abstract

We discuss the following problem: given n points in the plane (the “sites”), and an arbitrary query point q, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites, and then locating the query point in one of its regions. We give two algorithms, one that constructs the Voronoi diagram in O(n lg n) time, and another that inserts a new site in O(n) time. Both are based on the use of the Voronoi dual, the Delaunay triangulation, and are simple enough to be of practical value. The simplicity of both algorithms can be attributed to the separation of the geometrical and topological aspects of the problem, and to the use of two simple but powerful primitives, a geometric predicate and an operator for manipulating the topology of the diagram. The topology is represented by a new data structure for generalized diagrams, that is embeddings of graphs in two-dimensional manifolds. This structure represents simultaneously an embedding, its dual, and its mirror-image. Furthermore, just two operators are sufficient for building and modifying arbitrary diagrams.