Indexing multi-dimensional time-series with support for multiple distance measures

  • Authors:
  • Michail Vlachos;Marios Hadjieleftheriou;Dimitrios Gunopulos;Eamonn Keogh

  • Affiliations:
  • UC Riverside;UC Riverside;UC Riverside;UC Riverside

  • Venue:
  • Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

Although most time-series data mining research has concentrated on providing solutions for a single distance function, in this work we motivate the need for a single index structure that can support multiple distance measures. Our specific area of interest is the efficient retrieval and analysis of trajectory similarities. Trajectory datasets are very common in environmental applications, mobility experiments, video surveillance and are especially important for the discovery of certain biological patterns. Our primary similarity measure is based on the Longest Common Subsequence (LCSS) model, that offers enhanced robustness, particularly for noisy data, which are encountered very often in real world applications. However, our index is able to accommodate other distance measures as well, including the ubiquitous Euclidean distance, and the increasingly popular Dynamic Time Warping (DTW). While other researchers have advocated one or other of these similarity measures, a major contribution of our work is the ability to support all these measures without the need to restructure the index. Our framework guarantees no false dismissals and can also be tailored to provide much faster response time at the expense of slightly reduced precision/recall. The experimental results demonstrate that our index can help speed-up the computation of expensive similarity measures such as the LCSS and the DTW.