Mixing input-output pseudolinearization and gain scheduling techniques for stabilization of mobile robots with two independently driven wheels

  • Authors:
  • Jin-Tsong Jeng;Ching-Long Shih;Tsu-Tian Lee

  • Affiliations:
  • Department of Electrical Engineering, National Taiwan Institute of Technology, 43, Section 4, Keelung Road, Taipei, Taiwan 106, R.O.C. E-mail: shih@biped.ee.ntit.edu.tw;Department of Electrical Engineering, National Taiwan Institute of Technology, 43, Section 4, Keelung Road, Taipei, Taiwan 106, R.O.C. E-mail: shih@biped.ee.ntit.edu.tw;Department of Electrical Engineering, National Taiwan Institute of Technology, 43, Section 4, Keelung Road, Taipei, Taiwan 106, R.O.C. E-mail: shih@biped.ee.ntit.edu.tw

  • Venue:
  • Robotica
  • Year:
  • 1997

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we propose a two-loop structure to transform and stabilize the kinematic model of a nonholonomic mobile robot with two independently driven wheels. This two-loop structure consists of input-output pseudolinearization and gain scheduling techniques. A comparison with previous methods is included. The main contribution of this paper is to apply a input-output pseudolinearization transformation method and to use an effective pole-assignment strategy for stabilizing a mobile robot with two independently driven wheels. The proposed method has demonstrated superiority over previous methods.