Propagation of Uncertainty in Cooperative Multirobot Localization: Analysis and Experimental Results

  • Authors:
  • Stergios I. Roumeliotis;Ioannis M. Rekleitis

  • Affiliations:
  • Department of Computer Science & Engineering, University of Minnesota, 200 Union Str. SE, Minneapolis, MN 55455. stergios@cs.umn.edu;Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213. rekleitis@cmu.edu

  • Venue:
  • Autonomous Robots
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper examines the problem of cooperative localization for the case of large groups of mobile robots. A Kalman filter estimator is implemented and tested for this purpose. The focus of this paper is to examine the effect on localization accuracy of the number N of participating robots and the accuracy of the sensors employed. More specifically, we investigate the improvement in localization accuracy per additional robot as the size of the team increases. Furthermore, we provide an analytical expression for the upper bound on the positioning uncertainty increase rate for a team of N robots as a function of N, the odometric and orientation uncertainty for the robots, and the accuracy of a robot tracker measuring relative positions between pairs of robots. The analytical results derived in this paper are validated both in simulation and experimentally for different test cases.