A scalable distributed information management system

  • Authors:
  • Praveen Yalagandula;Mike Dahlin

  • Affiliations:
  • The University of Texas at Austin, Austin, TX;The University of Texas at Austin, Austin, TX

  • Venue:
  • Proceedings of the 2004 conference on Applications, technologies, architectures, and protocols for computer communications
  • Year:
  • 2004

Quantified Score

Hi-index 0.02

Visualization

Abstract

We present a Scalable Distributed Information Management System (SDIMS) that aggregates information about large-scale networked systems and that can serve as a basic building block for a broad range of large-scale distributed applications by providing detailed views of nearby information and summary views of global information. To serve as a basic building block, a SDIMS should have four properties: scalability to many nodes and attributes, flexibility to accommodate a broad range of applications, administrative isolation for security and availability, and robustness to node and network failures. We design, implement and evaluate a SDIMS that (1) leverages Distributed Hash Tables (DHT) to create scalable aggregation trees, (2) provides flexibility through a simple API that lets applications control propagation of reads and writes, (3) provides administrative isolation through simple extensions to current DHT algorithms, and (4) achieves robustness to node and network reconfigurations through lazy reaggregation, on-demand reaggregation, and tunable spatial replication. Through extensive simulations and micro-benchmark experiments, we observe that our system is an order of magnitude more scalable than existing approaches, achieves isolation properties at the cost of modestly increased read latency in comparison to flat DHTs, and gracefully handles failures.