Optimization and response surfaces: an optimization-based multi-resolution simulation methodology

  • Authors:
  • Darren T. Drewry;Paul F. Reynolds, Jr.;William R. Emanuel

  • Affiliations:
  • University of Virginia, Charlottesville, VA;University of Virginia, Charlottesville, VA;University of Virginia, Charlottesville, VA

  • Venue:
  • Proceedings of the 34th conference on Winter simulation: exploring new frontiers
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

The need for new approaches to the consistent simulation of related phenomena at multiple levels of resolution is great. While many fields of application would benefit from a complete and approachable solution to this problem, such solutions have proven extremely difficult. We present a multi-resolution simulation methodology which uses numerical optimization as a tool for maintaining external consistency between models of the same phenomena operating at different levels of temporal and/or spatial resolution. Our approach follows from previous work in the disparate fields of inverse modeling and spacetime constraint-based animation. As a case study, our methodology is applied to two environmental models of forest canopy processes that make overlapping predictions under unique sets of operating assumptions, and which execute at different temporal resolutions. Experimental results are presented and future directions are addressed.