Popular matchings

  • Authors:
  • David J. Abraham;Robert W. Irving;Telikepalli Kavitha;Kurt Mehlhorn

  • Affiliations:
  • Carnegie Mellon University, PA;University of Glasgow, UK;Max-Planck-Institut für Informatik, Saarbrücken, Germany;Max-Planck-Institut für Informatik, Saarbrücken, Germany

  • Venue:
  • SODA '05 Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the problem of matching a set of applicants to a set of posts, where each applicant has a preference list, ranking a non-empty subset of posts in order of preference, possibly involving ties. We say that a matching M is popular if there is no matching M' such that the number of applicants preferring M' to M exceeds the number of applicants preferring M to M'. In this paper, we give the first polynomial-time algorithms to determine if an instance admits a popular matching, and to find a largest such matching, if one exists. For the special case in which every preference list is strictly ordered (i.e. contains no ties), we give an O(n+m) time algorithm, where n is the total number of applicants and posts, and m is the total length of all the preference lists. For the general case in which preference lists may contain ties, we give an O(√nm) time algorithm, and show that the problem has equivalent time complexity to the maximum-cardinality bipartite matching problem.