Articulated Pose Estimation in a Learned Smooth Space of Feasible Solutions

  • Authors:
  • Tai-Peng Tian;Rui Li;Stan Sclaroff

  • Affiliations:
  • Boston University;Boston University;Boston University

  • Venue:
  • CVPR '05 Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops - Volume 03
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

A learning based framework is proposed for estimating human body pose from a single image. Given a differentiable function that maps from pose space to image feature space, the goal is to invert the process: estimate the pose given only image features. The inversion is an ill-posed problem as the inverse mapping is a one to many process, hence multiple solutions exist. It is desirable to restrict the solution space to a smaller subset of feasible solutions. The space of feasible solutions may not admit a closed form description. The proposed framework seeks to learn an approximation over such a space. Using Gaussian Process Latent Variable Modelling. The scaled conjugate gradient method is used to find the best matching pose in the learned space. The formulation allows easy incorporation of various constraints for more accurate pose estimation. The performance of the proposed approach is evaluated in the task of upper-body pose estimation from silhouettes and compared with the Specialized Mapping Architecture. The proposed approach performs better than the latter approach in terms of estimation accuracy with synthetic data and qualitatively better results with real video of humans performing gestures.