Modular Architecture for High Performance Implementation of the FRR Algorithm

  • Authors:
  • K. Sapiecha;R. Jorocki

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Computers
  • Year:
  • 1990

Quantified Score

Hi-index 14.98

Visualization

Abstract

A novel VLSI-oriented architecture to compute the discrete Fourier transform is presented. It consists of a homogeneous structure of processing elements. The structure has a performance equal to 1/t transforms per second, where t is the time needed for the execution of a single butterfly computation or the time needed for the collection of a complete vector of samples, whichever is longer. Although the system is not optimal (it achieves O(N/sup 3/ log/sup 4/ N) area*time/sup 2/ performance), the architecture is modular and makes it possible to design a system which performs FFT of any size without any extra circuitry. Moreover, the system can provide a built-in self-test and self-restructuring. The modular system is easy to integrate. Processing elements (PEs) are connected to the neighboring PEs only, and form a linear network easy to implement in two and three dimensions. The number of pins required for a chip does not depend on the number of PEs integrated on it, nor on the size of the transform. The system consists of only one type of integrated circuit with a structure irrespective of the transform size, which considerably reduces the cost of implementation.