A globally stable adaptive congestion control scheme for internet-style networks with delay

  • Authors:
  • Tansu Alpcan;Tamer Basar

  • Affiliations:
  • Coordinated Science Laboratory and Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL;Coordinated Science Laboratory and Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we develop, analyze and implement a congestion control scheme in a noncooperative game framework, where each user's cost function is composed of a pricing function proportional to the queueing delay experienced by the user, and a fairly general utility function which captures the user demand for bandwidth. Using a network model based on fluid approximations and through a realistic modeling of queues, we establish the existence of a unique equilibrium as well as its global asymptotic stability for a general network topology, where boundary effects are also taken into account. We also provide sufficient conditions for system stability when there is a bottleneck link shared by multiple users experiencing nonnegligible communication delays. In addition, we study an adaptive pricing scheme using hybrid systems concepts. Based on these theoretical foundations, we implement a window-based, end-to-end congestion control scheme, and simulate it in ns-2 network simulator on various network topologies with sizable propagation delays.