An adaptive Reed-Solomon errors-and-erasures decoder

  • Authors:
  • Lilian Atieno;Jonathan Allen;Dennis Goeckel;Russell Tessier

  • Affiliations:
  • University of Massachusetts, Amherst, MA;University of Massachusetts, Amherst, MA;University of Massachusetts, Amherst, MA;University of Massachusetts, Amherst, MA

  • Venue:
  • Proceedings of the 2006 ACM/SIGDA 14th international symposium on Field programmable gate arrays
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

The development of Reed-Solomon (RS) codes has allowed for improved data transmission over a variety of communication media. Although Reed-Solomon decoding provides a powerful defense against burst data errors, the significant circuit area and power consumption of customized RS decoder hardware can be limiting for embedded computing environments. To support enhanced performance decoding with minimal power consumption, a dynamically-reconfigurable FPGA-based Reed-Solomon decoder has been developed. Our errors-and-erasures decoding system uses multiple erasure blocks to identify the location of likely corrupted data and multiple decoders to attempt error correction. The RS decoder design is implemented in reconfigurable hardware to leverage architectural parallelism and specialization. Run-time dynamic reconfiguration of the decoding system is used in response to variations in channel conditions to support the fastest possible data rate while, as a secondary metric, minimizing decoder power consumption. Algorithm parameters for the decoding system have been determined via simulation and the design has been implemented in Altera Stratix FPGAs. Through experimentation using an Altera 1S40 Stratix FPGA, we show that dynamic reconfiguration can result in an 14% performance improvement versus a non-reconfigurable decoder implementation. Comparisons with a Pentium IV microprocessor illustrate five orders of magnitude performance improvement.