Proving correctness of highly-concurrent linearisable objects

  • Authors:
  • Viktor Vafeiadis;Maurice Herlihy;Tony Hoare;Marc Shapiro

  • Affiliations:
  • University of Cambridge;Brown University;Microsoft Research Cambridge;INRIA Rocquencourt & LIP6

  • Venue:
  • Proceedings of the eleventh ACM SIGPLAN symposium on Principles and practice of parallel programming
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study a family of implementations for linked lists using fine-grain synchronisation. This approach enables greater concurrency, but correctness is a greater challenge than for classical, coarse-grain synchronisation. Our examples are demonstrative of common design patterns such as lock coupling, optimistic, and lazy synchronisation. Although they are are highly concurrent, we prove that they are linearisable, safe, and they correctly implement a high-level abstraction. Our proofs illustrate the power and applicability of rely-guarantee reasoning, as well of some of its limitations. The examples of the paper establish a benchmark challenge for other reasoning techniques.