High-speed buffer management for 40 Gb/s-based photonic packet switches

  • Authors:
  • Hiroaki Harai;Masayuki Murata

  • Affiliations:
  • National Institute of Information and Communications Technology, Koganei, Tokyo, Japan;Osaka University, Suita, Osaka, Japan

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We develop a method of high-speed buffer management for output-buffered photonic packet switches. The use of optical fiber delay lines is a promising solution to constructing optical buffers. The buffer manager determines packet delays in the fiber delay line buffer before the packets arrive at the buffer. We propose a buffer management method based on a parallel and pipeline processing architecture consisting of (log2 N + 1) pipeline stages, where N is the number of ports of the packet switch. This is an expansion of a simple sequential scheduling used to determine the delays of arriving packets. Since the time complexity of each processor in the pipeline stages is O(1), the throughput of this buffer management is N times larger than that of the sequential scheduling method. This method can be used for buffer management of asynchronously arriving variable-length packets. We show the feasibility of a buffer manager supporting 128 × 40 Gb/s photonic packet switches, which provide at least eight times as much throughput as the latest electronic IP routers. The proposed method for asynchronous packets overestimates the buffer occupancy to enable parallel processing. We show through simulation experiments that the degradation in the performance of the method resulting from this overestimation is quite acceptable.