Using inaccurate models in reinforcement learning

  • Authors:
  • Pieter Abbeel;Morgan Quigley;Andrew Y. Ng

  • Affiliations:
  • Stanford University, Stanford, CA;Stanford University, Stanford, CA;Stanford University, Stanford, CA

  • Venue:
  • ICML '06 Proceedings of the 23rd international conference on Machine learning
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In the model-based policy search approach to reinforcement learning (RL), policies are found using a model (or "simulator") of the Markov decision process. However, for high-dimensional continuous-state tasks, it can be extremely difficult to build an accurate model, and thus often the algorithm returns a policy that works in simulation but not in real-life. The other extreme, model-free RL, tends to require infeasibly large numbers of real-life trials. In this paper, we present a hybrid algorithm that requires only an approximate model, and only a small number of real-life trials. The key idea is to successively "ground" the policy evaluations using real-life trials, but to rely on the approximate model to suggest local changes. Our theoretical results show that this algorithm achieves near-optimal performance in the real system, even when the model is only approximate. Empirical results also demonstrate that---when given only a crude model and a small number of real-life trials---our algorithm can obtain near-optimal performance in the real system.