Modeling and Analysis of Generalized Slotted-Aloha MAC Protocols in Cooperative, Competitive and Adversarial Environments

  • Authors:
  • Richard T. B. Ma;Vishal Misra;Dan Rubenstein

  • Affiliations:
  • Columbia University;Columbia University;Columbia University

  • Venue:
  • ICDCS '06 Proceedings of the 26th IEEE International Conference on Distributed Computing Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.02

Visualization

Abstract

Aloha [1] and its slotted variant [2] are commonly deployed Medium Access Control (MAC) protocols in environments where multiple transmitting devices compete for a medium, yet may have difficulty sensing each other's presence. This paper models and evaluates the throughput that can be achieved in a system where nodes compete for bandwidth using a generalized version of slotted- Aloha protocols. We evaluate the channel utilization and fairness of these types of protocols for a variety of node objectives, including maximizing aggregate throughput of the channel, each node greedily maximizing its own throughput, and attacker nodes that attempt to jam the channel. If all nodes are selfish and greedily attempt to maximize their own throughputs, a situation similar to the traditional Prisoner's Dilemma[3] arises. Our results reveal that under heavy loads, greedy strategies reduce the utilization, and that attackers cannot do much better than attacking during randomly selected slots.