A Hybrid Approach for Mapping Conjugate Gradient onto an FPGA-Augmented Reconfigurable Supercomputer

  • Authors:
  • Gerald R. Morris;Viktor K. Prasanna;Richard D. Anderson

  • Affiliations:
  • University of Southern California Los Angeles, CA;University of Southern California Los Angeles, CA;Jackson State University Jackson, MS

  • Venue:
  • FCCM '06 Proceedings of the 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Supercomputer companies such as Cray, Silicon Graphics, and SRC Computers now offer reconfigurable computer (RC) systems that combine general-purpose processors (GPPs) with field-programmable gate arrays (FPGAs). The FPGAs can be programmed to become, in effect, application-specific processors. These exciting supercomputers allow end-users to create custom computing architectures aimed at the computationally intensive parts of each problem. This report describes a parameterized, parallelized, deeply pipelined, dual-FPGA, IEEE-754 64-bit floating-point design for accelerating the conjugate gradient (CG) iterative method on an FPGA-augmented RC. The FPGA-based elements are developed via a hybrid approach that uses a high-level language (HLL)-to-hardware description language (HDL) compiler in conjunction with custombuilt, VHDL-based, floating-point components. A reference version of the design is implemented on a contemporary RC. Actual run time performance data compare the FPGAaugmented CG to the software-only version and show that the FPGA-based version runs 1.3 times faster than the software version. Estimates show that the design can achieve a 4 fold speedup on a next-generation RC.