Multi-signatures in the plain public-Key model and a general forking lemma

  • Authors:
  • Mihir Bellare;Gregory Neven

  • Affiliations:
  • University of California San Diego, La Jolla, California;Katholieke Universiteit Leuven, Heverlee, Belgium and Ecole Normale Supérieure, Paris, France

  • Venue:
  • Proceedings of the 13th ACM conference on Computer and communications security
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

A multi-signature scheme enables a group of signers to produce a compact, joint signature on a common document, and has many potential uses. However, existing schemes impose key setup or PKI requirements that make them impractical, such as requiring a dedicated, distributed key generation protocol amongst potential signers, or assuming strong, concurrent zero-knowledge proofs of knowledge of secret keys done to the CA at key registration. These requirements limit the use of the schemes. We provide a new scheme that is proven secure in the plain public-key model, meaning requires nothing more than that each signer has a (certified) public key. Furthermore, the important simplification in key management achieved is not at the cost of efficiency or assurance: our scheme matches or surpasses known ones in terms of signing time, verification time and signature size, and is proven secure in the random-oracle model under a standard (not bilinear map related) assumption. The proof is based on a simplified and general Forking Lemma that may be of independent interest.