A 1.375-Approximation Algorithm for Sorting by Transpositions

  • Authors:
  • Isaac Elias;Tzvika Hartman

  • Affiliations:
  • -;-

  • Venue:
  • IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB)
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Sorting permutations by transpositions is an important problem in genome rearrangements. A transposition is a rearrangement operation in which a segment is cut out of the permutation and pasted in a different location. The complexity of this problem is still open and it has been a 10-year-old open problem to improve the best known 1.5-approximation algorithm. In this paper, we provide a 1.375-approximation algorithm for sorting by transpositions. The algorithm is based on a new upper bound on the diameter of 3-permutations. In addition, we present some new results regarding the transposition diameter: We improve the lower bound for the transposition diameter of the symmetric group and determine the exact transposition diameter of simple permutations.