DMDC: Delayed Memory Dependence Checking through Age-Based Filtering

  • Authors:
  • Fernando Castro;Luis Pinuel;Daniel Chaver;Manuel Prieto;Michael Huang;Francisco Tirado

  • Affiliations:
  • University Complutense of Madrid;University Complutense of Madrid;University Complutense of Madrid;University Complutense of Madrid;University of Rochester;University Complutense of Madrid

  • Venue:
  • Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

One of the main challenges of modern processor design is the implementation of a scalable and efficient mechanism to detect memory access order violations as a result of out-of-order execution of memory instructions. Traditional CAM-based associative queues can be very slow and energy hungry. In this paper we introduce two new management schemes. The first one is a filtering scheme based on simple age-tracking. This scheme can easily avoid 95-98% of associative load queue (LQ) searches using only a few registers. This translates into significant power savings. More importantly, however, this filtering makes our second scheme, Delayed Memory Dependence Checking (DMDC), practical. With a small hash table, DMDC completely avoids the need for an associative LQ and relies on indexing-based checking at the commit phase and hence cuts the energy spent on LQ by an average of 95%. At an average of about 0.3%, the performance impact is negligible. When the energy cost of the increased execution time is factored in, the processor still makes net energy savings of about 3-8%, depending on the configuration and the applications.