Efficient evolution of neural network topologies

  • Authors:
  • K. O. Stanley;R. Miikkulainen

  • Affiliations:
  • Dept. of Comput. Sci., Texas Univ., Austin, TX, USA;Dept. of Comput. Sci., Texas Univ., Austin, TX, USA

  • Venue:
  • CEC '02 Proceedings of the Evolutionary Computation on 2002. CEC '02. Proceedings of the 2002 Congress - Volume 02
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Neuroevolution, i.e. evolving artificial neural networks with genetic algorithms, has been highly effective in reinforcement learning tasks, particularly those with hidden state information. An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT) that outperforms the best fixed-topology methods on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure. We test this claim through a series of ablation studies that demonstrate that each component is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT is also an important contribution to GAs because it shows how it is possible for evolution to both optimize and complexify solutions simultaneously, making it possible to evolve increasingly complex solutions over time, thereby strengthening the analogy with biological evolution.