Nonobtuse remeshing and mesh decimation

  • Authors:
  • J. Y. S. Li;H. Zhang

  • Affiliations:
  • Simon Fraser University, Burnaby, BC, Canada;Simon Fraser University, Burnaby, BC, Canada

  • Venue:
  • SGP '06 Proceedings of the fourth Eurographics symposium on Geometry processing
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Quality meshing in 2D and 3D domains is an important problem in geometric modeling and scientific computing. We are concerned with triangle meshes having only nonobtuse angles. Specifically, we propose a solution for guaranteed nonobtuse remeshing and nonobtuse mesh decimation. Our strategy for the remeshing problem is to first convert an input mesh, using a modified Marching Cubes algorithm, into a rough approximate mesh that is guaranteed to be nonobtuse. We then apply iterative "deform-to-fit" via constrained optimization to obtain a high-quality approximation, where the search space is restricted to be the set of nonobtuse meshes having a fixed connectivity. With a detailed nonobtuse mesh in hand, we apply constrained optimization again, driven by a quadric-based error, to obtain a hierarchy of nonobtuse meshes via mesh decimation.