High-speed recursion architectures for MAP-based turbo decoders

  • Authors:
  • Zhongfeng Wang

  • Affiliations:
  • School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

The maximum a posterior probability (MAP) algorithm has been widely used in Turbo decoding for its outstanding performance. However, it is very challenging to design high-speed MAP decoders because of inherent recursive computations. This paper presents two novel high-speed recursion architectures for MAP-based Turbo decoders. Algorithmic transformation, approximation, and architectural optimization are incorporated in the proposed designs to reduce the critical path. Simulations show that neither of the proposed designs has observable decoding performance loss compared to the true MAP algorithm when applied in Turbo decoding. Synthesis results show that the proposed Radix-2 recursion architecture can achieve comparable processing speed to that of the state-of-the-art recursion (Radix-4) architecture with significantly lower complexity while the proposed Radix-4 architecture is 32% faster than the best existing design.