Cellular automata for simulating land use changes based on support vector machines

  • Authors:
  • Qingsheng Yang;Xia Li;Xun Shi

  • Affiliations:
  • School of Geography and Planning, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, PR China and Department of Tourism and Environment, Guangdong University of Business Studies, Gua ...;School of Geography and Planning, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, PR China and Guangzhou Institute of Geography, Guangzhou 510275, PR China;Department of Geography, Dartmouth College, Hanover, NH 03755, USA

  • Venue:
  • Computers & Geosciences
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Cellular automata (CA) have been increasingly used to simulate urban sprawl and land use dynamics. A major issue in CA is defining appropriate transition rules based on training data. Linear boundaries have been widely used to define the rules. However, urban land use dynamics and many other geographical phenomena are highly complex and require nonlinear boundaries for the rules. In this study, we tested the support vector machines (SVM) as a method for constructing nonlinear transition rules for CA. SVM is good at dealing with nonlinear complex relationships. Its basic idea is to project input vectors to a higher dimensional Hilbert feature space, in which an optimal classifying hyperplane can be constructed through structural risk minimization and margin maximization. The optimal hyperplane is unique and its optimality is global. The proposed SVM-CA model was implemented using Visual Basic, ArcObjects^(R), and OSU-SVM. A case study simulating the urban development in the Shenzhen City, China demonstrates that the proposed model can achieve high accuracy and overcome some limitations of existing CA models in simulating complex urban systems.