High aspect ratio copper through-silicon-vias for 3D integration

  • Authors:
  • Chongshen Song;Zheyao Wang;Qianwen Chen;Jian Cai;Litian Liu

  • Affiliations:
  • Institute of Microelectronics, Tsinghua University, Beijing 100084, China;Institute of Microelectronics, Tsinghua University, Beijing 100084, China;Institute of Microelectronics, Tsinghua University, Beijing 100084, China;Institute of Microelectronics, Tsinghua University, Beijing 100084, China;Institute of Microelectronics, Tsinghua University, Beijing 100084, China

  • Venue:
  • Microelectronic Engineering
  • Year:
  • 2008

Quantified Score

Hi-index 2.88

Visualization

Abstract

Three-dimensional (3D) integration, which uses through-silicon-vias (TSVs) to interconnect multiple layers of active circuits, offers significant improvements over planar integrated circuits (ICs) on performance, functionality, and integration density. To address a key issue in 3D integration, the fabrication of high aspect ratio TSVs, this paper presents the bottom-up copper electroplating technique to fill high aspect ratio vias with copper. Deep through-silicon holes with aspect ratio as high as 10:1 are etched using deep reactive ion etching (DRIE) method, and are completely filled with copper using bottom-up copper electroplating technique without forming any voids or seams. Based on this technique, a multi-layer 3D integration method is proposed. This method uses temporary transfer wafer to provide mechanical support to the device wafer during wafer thinning process and to provide the seed layer for copper electroplating. Then bottom-up electroplating is performed to fill the high aspect ratio vias with copper. Experimental results verify the feasibility of the proposed method.