Speed Scaling with a Solar Cell

  • Authors:
  • Nikhil Bansal;Ho-Leung Chan;Kirk Pruhs

  • Affiliations:
  • IBM T.J. Watson Research, NY,;Computer Science Department, University of Pittsburgh,;Computer Science Department, University of Pittsburgh,

  • Venue:
  • AAIM '08 Proceedings of the 4th international conference on Algorithmic Aspects in Information and Management
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the speed scaling problem of scheduling a collection of tasks with release times, deadlines, and sizes so as to minimize the energy recharge rate. This is the first theoretical investigation of speed scaling for devices with a regenerative energy source. We show that the problem can be expressed as a polynomial sized convex program. We that using the KKT conditions, one can obtain an efficient algorithm to verify the optimality of a schedule. We show that the energy optimal YDS schedule, is 2-approximate with respect to the recharge rate. We show that the online algorithm BKP is O(1)-competitive with respect to recharge rate.