Near-linear approximation algorithms for geometric hitting sets

  • Authors:
  • Pankaj K. Agarwal;Esther Ezra;Micha Shair

  • Affiliations:
  • Duke University, Durham, NC, USA;Duke University, Durham, NC, USA;Tel Aviv University, Tel Aviv, Israel

  • Venue:
  • Proceedings of the twenty-fifth annual symposium on Computational geometry
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Given a set system (X,R), the hitting set problem is to find a smallest-cardinality subset H ⊆ X, with the property that each range R ∈ R has a non-empty intersection with H. We present near-linear time approximation algorithms for the hitting set problem, under the following geometric settings: (i) R is a set of planar regions with small union complexity. (ii) R is a set of axis-parallel d-rectangles in d-space. In both cases X is either the entire d-dimensional space or a finite set of points in d-space. The approximation factors yielded by the algorithm are small; they are either the same as or within an O(log n) factor of the best factors known to be computable in polynomial time.