Algorithm and architecture design of power-oriented H.264/AVC baseline profile encoder for portable devices

  • Authors:
  • Yu-Han Chen;Tung-Chien Chen;Chuan-Yung Tsai;Sung-Fang Tsai;Liang-Gee Chen

  • Affiliations:
  • Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan;Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan;Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan;Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan;Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

  • Venue:
  • IEEE Transactions on Circuits and Systems for Video Technology
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Because video services are becoming popular on portable devices, power becomes the primary design issue for video coders nowadays. H.264/AVC is an emerging video coding standard which can provide outstanding coding performance and thus is suitable for mobile applications. In this paper, we target a power-efficient H.264/AVC encoder. The main power consumption in an H.264/AVC encoding system is induced by data access of motion estimation (ME). At first, we propose hardware-oriented algorithms and corresponding parallel architectures of integer ME (IME) and fractional ME (FME) to achieve memory access power reduction. Then, a parameterized encoding system and flexible system architecture are proposed to provide power scalability and hardware efficiency, respectively. Finally, our design is implemented under TSMC 0.18 µm CMOS technology with 12.84 mm2 core area. The required hardware resources are 452.8 K logic gates and 16.95 KB SRAMs. The power consumption ranges from 67.2 to 43.5 mW under D1 (720 × 480) 30 frames/s video encoding, and more than 128 operating configurations are provided.