A performance evaluation of intrusion-tolerant routing in wireless sensor networks

  • Authors:
  • Jing Deng;Richard Han;Shivakant Mishra

  • Affiliations:
  • University of Colorado at Boulder, Computer Science Department;University of Colorado at Boulder, Computer Science Department;University of Colorado at Boulder, Computer Science Department

  • Venue:
  • IPSN'03 Proceedings of the 2nd international conference on Information processing in sensor networks
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper evaluates the performance of INSENS, an INtrusion-tolerant routing protocol for wireless SEnsor Networks. Security in sensor networks is important in battlefield monitoring and home security applications to prevent intruders from eavesdropping, from tampering with sensor data, and from launching denial-of-service (DOS) attacks against the entire network. The resilience of INSENS's multipath performance against various forms of communication-based attacks by intruders is evaluated in simulation. Within the context of INSENS, the paper evaluates implementations on the motes of the RC5 and AES encryption standards, an RC5-based scheme to generate message authentication codes (MACs), and an RC5-based generation of one-way sequence numbers.